
Biol. Rev. (2012), 87, pp. 290–312. 290
doi: 10.1111/j.1469-185X.2011.00201.x

Costs of dispersal

Dries Bonte1,∗, Hans Van Dyck2, James M. Bullock3, Aurélie Coulon4, Maria Delgado5,
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ABSTRACT

Dispersal costs can be classified into energetic, time, risk and opportunity costs and may be levied directly or deferred
during departure, transfer and settlement. They may equally be incurred during life stages before the actual dispersal
event through investments in special morphologies. Because costs will eventually determine the performance of
dispersing individuals and the evolution of dispersal, we here provide an extensive review on the different cost types
that occur during dispersal in a wide array of organisms, ranging from micro-organisms to plants, invertebrates and
vertebrates. In general, costs of transfer have been more widely documented in actively dispersing organisms, in contrast
to a greater focus on costs during departure and settlement in plants and animals with a passive transfer phase. Costs
related to the development of specific dispersal attributes appear to be much more prominent than previously accepted.
Because costs induce trade-offs, they give rise to covariation between dispersal and other life-history traits at different
scales of organismal organisation. The consequences of (i) the presence and magnitude of different costs during different
phases of the dispersal process, and (ii) their internal organisation through covariation with other life-history traits, are
synthesised with respect to potential consequences for species conservation and the need for development of a new
generation of spatial simulation models.

Key words: settlement, transfer, departure, trade-offs, fitness, global change, modelling, plants, micro-organisms,
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I. INTRODUCTION

Dispersal encompasses all movements of individuals or
propagules with potential consequences for gene flow across
space (Ronce, 2007). Even though dispersal is an elementary
driver of ecological and evolutionary patterns, it remains
unresolved which ultimate factors most influence variation
of dispersal in natural populations. Wide recognition is given
to benefits and costs due to spatio-temporally changing
environments, kin competition and inbreeding avoidance
(Cressman & Krivan, 2006; Gandon, 1999; Gandon &
Michalakis, 1999; Krivan, Cressman & Schneider, 2008;
Leturque & Rousset, 2002; Palmqvist, Lundberg & Jonzen,
2000). While all these factors simultaneously shape the
process of dispersal, each may influence dispersal in different
ways (Lecomte et al., 2004; Stenseth & Lidicker, 1992). This
‘‘multi-causality’’ has hampered progress in disentangling
and quantifying the relevance of each factor for dispersal.

A conceptual approach which has proven fruitful is to shift
from a population dynamical perspective, with emigration
and immigration as the population-level processes, towards
an individual-based perspective where dispersal is considered
as a multi-phase life-history process. This process can then
be considered as composed of traits related to departure
(initiation of the eventual act of leaving natal habitat),
transfer (movement), and settlement (finalization of the
movement phase in novel habitat) (Clobert et al., 2009).
The movement phase is often the only component observed
in natural conditions, but habitat selection after transfer is
becoming recognised as important (Mabry & Stamps, 2008).
Departure and settlement are instant behaviours triggered

by informed decisions (Clobert et al., 2009). Splitting up the
process allows a better understanding of how fitness costs
might be levied at each phase, identification of whether
levied costs are paid immediately or deferred, and how this
affects selection on particular aspects of dispersal (short-long
distance, density dependence, sex-biases, etc.). An overview
of costs incurred during dispersal is, to the best of our
knowledge, lacking and deserves special attention because
of its relevance for both fundamental evolutionary biology
and applied spatial ecology (e.g. the management of species,
communities, ecosystem services and functioning). Many
studies have indicated that evolution of life history and
dispersal in particular may occur on ecological timescales
(e.g. Carroll et al., 2007; Friedenberg, 2003; Cheptou et al.,
2008). This suggests that environmental change will create
selection on dispersal by modifying its costs and benefits.

Many dispersal-related traits are related to the
development of machinery (morphology, physiology) during
earlier life, either through plasticity or standing variation in
investment (Dingle, 1996). These costs are then incurred
during the pre-departure phase (although they may be
deferred to later in the life history as well). During
development, organisms may invest in phenotypes that
enable or enhance their ability to move, e.g. development
of wings, or seed adaptations which facilitate attachment
to mobile vectors. Since these costs are incurred during
development, they are also paid by individuals that eventually
stay in the natal habitat. This will by definition contrast with
the costs levied during the effective dispersal phase, where
costs may be (a) linked to the movement itself (e.g. as a
function of distance) taking place during the transfer phase,
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or (b) a threshold function of leaving the natal area or
entering a new one, being in these cases related to the
departure or the settlement phases respectively. We provide
a schematic overview describing how the investment in
dispersal and the costs paid during dispersal may impact
upon investment during development (before dispersal) and
also after settlement (Fig. 1).

Dispersal costs will also inevitably feedback against the
costs of being or remaining resident (Baguette & Van Dyck,
2007; Belichon, Clobert & Massot, 1996). For instance,
increasing the dispersal costs would be expected to decrease
dispersal rates. This will lead to lower emigration rates
and may increase resource competition, kin competition
and inbreeding in local populations. The eventual dispersal
strategy will therefore be influenced not only by the costs
and benefits of individual decisions but also by frequency-
dependent processes at the metapopulation level (Del Mar
Delgado et al., 2011).

The selection of different dispersal strategies may be
essential for the persistence of populations in fragmented
landscapes (Kokko & Lopez-Sepulcre, 2006), and can play
a key role in determining the range-expansion dynamics of
invasive species and range-shifting in response to climate
change (Burton, Phillips & Travis, 2010; Levin et al., 2003).
Therefore, the improvement of our knowledge of dispersal

cost structures and covariation with other life-history traits
is essential to understand, predict and manage the future
of populations. This implies not only the study of energetic
and mortality costs during the process of moving between
patches, but also of those that are levied before and after
settlement, as well as the complex trade-off relationship
between them (Fig. 1). We first describe a general framework
of dispersal costs with an overview of the main cost types
at each of the dispersal phases. Secondly, we present an
extensive overview of dispersal costs and their measurement
(currencies) among a wide range of organisms. Thirdly, we
focus on how these different cost structures may trade-off and
feedback against other life-history traits. We elaborate finally
on the significance of variation in costs for evolutionary
responses to global change and discuss the consequences for
future modelling work.

Our review is based on an extensive literature search using
the Web of Science database for a wide array of taxonomic
groups including plants, micro-organisms, terrestrial and
marine arthropods, molluscs and bivalves, fishes, reptiles,
amphibians, birds and mammals. The search was based on
general key search terms: (dispers* or migrat* or move*)
and (cost* or mortality or trade-off* or fecundity or survival).
These search terms rendered more than 11000 papers. Based
on the primary criterion that the study effectively dealt with

Fig. 1. An individual’s life history is shaped by a range of trade-offs (black arrows) as resources cannot be simultaneously invested in
growth, reproduction and dispersal. Similarly, investment in resources in one stage of development may be traded-off against other
stages: e.g. investment in juvenile growth may be traded-off against adult fecundity. Hence, the investment in dispersal and the costs
paid during dispersal may impact upon investment during development (before dispersal) and also after settlement. The process of
dispersal is a sequence of ‘‘departure, transfer and settlement’’ (grey arrows), and each has its associated costs. Investment in one
phase of the process can impact upon the costs levied elsewhere (e.g. the costs of locomotory apparatus may be paid pre-departure
by taking resources away from investment in growth, survival or future fecundity, in which pre-departure costs can impact on
post-settlement life history).
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dispersal and shows evidence of costs, we here synthesised
information from more than 300 papers.

II. ORGANISATION OF DISPERSAL COSTS

(1) Cost types and currencies

Despite the fact that costs of dispersal are diverse, no attempt
has been made to classify them. In this review, we separate
the energetic, time and risk costs from indirect opportunity
costs. Energetic and time costs relate to investments that
cannot be invested in other activities, while risk costs refer to
the probability of dying or suffering harm during dispersal.
We define opportunity costs as being related to the surrender
of advantages derived from prior residence and familiarity.
These costs typically come into play once the organism has
left a local area, so after the departure and transfer phase. In
this sense, local adaptation can also lead to an opportunity
cost as the disperser may lose the advantage of being locally
adapted, which has developed through natural selection over
former generations. Exact definitions of the costs associated
with dispersal are provided in Table 1. All costs can be
incurred immediately or subsequently in life, so they can
be either direct or deferred. A considerable overlap between
both may occur. For instance, a reduction of immunodefence
due to energetic expenditure during dispersal can impact on
future sensitivity towards diseases (see Table 2).

Table 2 provides examples of the different types of costs.
As might be expected, direct and deferred risk and mortality
costs are widely documented during the different phases
of the dispersal process (Fig 2a: eagle owl mortality during
transfer as an example). Risk costs during initiation or during
settlement appear, however, to be mostly associated with
passively (seeds) or semi-passively (invertebrates) dispersing
organisms. Active dispersers may, however, also face such
costs by interactions with con- or heterospecifics in the
settlement phase due to, for instance, conflicts during
territory occupation (Milner et al., 2010; Whitehouse &
Jaffe, 1996), but clear evidence within the perspective of
dispersal is scarcely documented (but see Griesser et al., 2008;
Kahlenberg et al., 2008). Energetic costs are documented
for both passively and actively dispersing animals. In the
former, energetic costs are related to basal respiration during
transfer, while in the latter loss of reserves due to increased
locomotory activity are prominent. Costs related to acquired
damage (attrition costs) are recorded in animals and plants
during transfer, while time costs are sparsely quantified in
the light of habitat selection.

Time costs may impact upon opportunity costs that
are levied later in life. In a strict sense, it is difficult to
link opportunity costs to one specific dispersal phase, and
opportunity costs may be directly related to time or energetic
costs. For instance, time spent searching for a new habitat
is an opportunity cost although it may eventually lead
to ultimate benefits in terms of mapping the presence of
resources or competitors. In theory the dispersal decisions

an individual makes are affected by the expected fitness
‘elsewhere’ compared to the expected fitness at ‘home’,
although the latter will by definition remain unknown if
the individual decides not to disperse (Baguette & Van
Dyck, 2007). Therefore individual opportunity costs can be
expected to be prevalent in all phases of the dispersal process.
The higher predation risk a disperser would face because,
for example, it gives up access rights to a defended burrow
can be seen as an opportunity cost. However, the higher
predation risk of a disperser traversing a hostile landscape
matrix is more likely to be a direct cost of dispersal. The
time expended during dispersal is a similar case, as it can be
considered either as a direct or as an opportunity cost.

One prominent case of opportunity cost that deserves
special attention is the loss of evolutionarily acquired
advantages when settling in new habitat. Maladaption costs
are most obviously incurred at the individual level through
immediate decreases of fertility or survival (e.g. Blondel
et al., 1993; Bonte et al., 2010a; Burt, 1995; Hansson, Bensch
& Hasselquist, 2004; Hereford, 2009; Leimu & Fischer,
2008; Vandegehuchte, de la Pena & Bonte, 2010), but
can be compensated, for instance, by higher fecundity due
to heterozygote advantage and/or reduced genetic load
(Agren & Schemske, 1993; Busch, 2005; Mix et al., 2006).
Any reduction in fitness at the population level owing to
maladaptive genes from immigrants is termed as migration
load (Hu & Li, 2003). Burt’s study (Burt, 1995) is unique in the

Table 1. Definitions of the different cost types associated with
dispersal. All costs can be paid immediately (direct) or in the
future (deferred)

Cost type Definition

Energetic costs Costs due to lost metabolic energy in
movements. Energetic costs may also
comprise costs related to the
development of specific machinery
associated with dispersal, i.e. energetic
expenditure for the construction of
special dispersal organs and tissues
(muscles, wings).

Time costs Direct costs due to the time invested in
dispersal that cannot be invested in other
activities.

Risk costs Direct costs related to both mortality risks
(e.g. due to increased predation or
settlement in unsuitable habitat) and
deferred attrition costs by accumulated
damage (e.g. wing wear or wounding) or
physiological changes.

Opportunity costs Costs incurred by selecting the next-best
choice available from several mutually
exclusive options. Opportunity costs are
typical in individuals giving up prior
residence advantages and
familiarity-related advantages.
Opportunity costs also include the loss
of any advantage derived from being
locally adapted.
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Table 2. Examples of the different classes of costs during the pre-emigration, initiation, transfer and (post)settlement phases of
dispersal

Risk costs

Mortality Attrition Energy costs Time costs Opportunity costs

Pre-emigration Cost of wing
development in
insects [1–5]

Behavioural
phenotypes with
reduced
performance [6, 7]

Initiation Seed predation [8–15] Energetic investment
for or the
production of
dispersal structures
[17, 22–24]

Exposure to predators
in arachnids [16, 17]
and bivalves
[18–21]

Transfer Mortality during gut
passage in
endozoochory [25]

Wounding in
mammals [44, 45]

Decrease of basal
respiration and
metabolism in
plankton [50–54]Direct predation in

microorganisms
[26–29], insects
[30–33], lizards
[34–39]

Trade-offs between
movement and
immunodefence [46,
47] or disease
resistance [48, 49]

Energetic costs of flight
[32, 47, 55–58] or
ambulatory
movements [59–64]
in insects, fish
[65–68], birds
[69–75] and
mammals [76–84]

Mortality due to
collision [40, 41], road
kills [42] and human
persecution [41, 43] in
vertebrates

(Post-)
settlement

Post-dispersal seed
[85–91]) or seedling
predation [92–96]

Active production
of anchoring in
marine plankton
[21] and aquatic
insects [98, 99]

Search costs to select
optimal habitat in
birds [101, 102]

Decreased survival
[103] or
reproductive success
[104] in birds due to
loss of familiarity
with the
environment but
also due to loss of
benefits from
nepotism by parents
[105–107]

Ending up in bad
habitat [97].

Production of
chemicals to overcome
Allee effects [100]

Loss of social rank in
birds [75, 108–111]
and mammals [112]

Density-dependent
starvation in social
or group-living
arthropods facing
Allee effects when
settling in novel
underpopulated
areas [30, 49, 113]
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Table 2. (Cont.)

Risk costs

Mortality Attrition Energy costs Time costs Opportunity costs

Costs of outbreeding depression, by mismatches in the genetic
environment, are recorded in song sparrows [114]

Loss of local adaptation advantages—migration load [115–119]

References: 1, Dixon & Kindlmann (1999); 2, Denno et al. (1985); 3, Kisimoto (1956); 4, Dixon et al. (1993); 5: Ahlroth et al. (1999); 6,
Fjerdingstad et al. (2007); 7, Yano & Takafuji (2002); 8, Xiao et al. (2007); 9, Ostergard et al. (2007); 10, Greig (1993); 11, Traveset (1991);
12, Zagt (1997); 13, Fedriani & Manzaneda (2005); 14, Grimm (1995); 15, Silva & Taberelli (2001); 16, Young & Lockley (1988); 17,
Bell et al. (2005); 18, Cummings et al. 1993); 19, Deblok & Tanmaas (1977); 20, Lundquist et al. (2004); 21, Oliver & Retiere (2006); 22,
Craig (1997); 23, Vahl & Clausen (1980); 24, Cheung et al. (2006); 25, Vander Wall & Longland (2004); 26, Allen & McAlister (2007); 27,
Hiddink et al. (2002); 28, Hiddink & Wolff (2002); 29, Pechenik (1999); 30, Aukema & Raffa (2004); 31, Korb & Linsenmair (2002); 32,
Srygley (2004); 33, Galeotti & Inglisa (2001); 34, Amo et al. (2007); 35, Bonnet et al. (1999); 36, Hamann et al. (2007); 37, Jessop et al. (2004);
38, Pietrek et al. (2009); 39, Winne & Hopkins (2006); 40, Smallwood et al. (2009); 41, Real & Manosa (2001); 42, Massemin et al. (1998);
43, Kenward et al. (1999); 44, Solomon (2003); 45, Soulsbury et al. (2008); 46, Adamo et al. (2008); 47, Srygley et al. (2009); 48, Adamo &
Parsons (2006); 49, Calleri et al. (2006); 50, Bennet & Marshall (2005); 51, Crawford (1992); 52, Epp & Lewis (1984); 53, McHenry & Patek
(2004); 54, Wendt (2000); 55, Combes & Dudley (2009); 56, Berrigan (1991); 57, Hedenstrom et al. (2001); 58, Srygley & Ellington (1999);
59, Kram (1996); 60, Kramer & McLaughlin (2001); 61, Berrigan & Lighton (1994); 62, Full & Tullis (1990); 63, Duncan & Crewe (1993);
64, Lighton et al. (1993); 65, Aarestrup et al. (2005); 66, Cooke et al. (2006); 67, Rand & Hinch (1998); 68, Rand et al. (2006); 69, Bowlin et al.
(2005); 70, Johnson et al. (2006); 71, Mandel et al. (2008); 72, Masman & Klaassen (1987); 73, Pennycuick & Desanto (1989); 74, Schnell
& Hellack (1979); 75, Vanderwerf (2008); 76, Boldt & Ingold (2005); 77, Davis & Weihs (2007); 78, Fish et al. (2001); 79, Girard (2001);
80, Guerra & Ades (2002); 81, Johnson et al. (2002a); 82, Johnson et al. (2002b); 83, Pontzer (2007); 84, Rosen & Trites (2002); 85, Blate
et al. (1998); 86, Cochrane (2003); 87, Farnsworth & Ellison (1997); 88, Forget (1992); 89, Keith & Pellow (2005); 90, Kiviniemi (2001);
91, Nystrand & Granstrom (2000); 92, Edwards & Crawley (1999); 93, Green & Juniper (2004); 94, Hoshizaki et al. (1997); 95, Lopez &
Terborgh (2007); 96, Pywell et al. (2007); 97, Cheptou et al. (2008); 98, Fingerut et al. (2009); 99, Fingerut et al. (2006); 100, Huang et al.
(2007); 101, Hinsley (2000); 102, Part (1995); 103, Brown et al. (2008); 104, Part (1991); 105, Dickinson et al. (2009); 106, Griesser & Ekman
(2004); 107, Nystrand (2007); 108, Forero et al. (2002); 109, Hansson et al. (2004); 110, Nilsson (1989); 111, van der Jeugd (2001); 112, Cant
et al. (2001); 113, Bilde et al. (2007); 114, Marr et al. (2002); 115, Blondel et al. (1993); 116, Burt (1995); 117, Leimu & Fischer (2008); 118,
Sanford & Kelly (2010); 119, Tack & Roslin (2010).

sense that migration loads in a plant species were estimated
to be of a higher magnitude than mutation loads. As such,
migration load may equally prevent adaptive divergence
(Blackledge & Gillespie, 2004; Gavrilets, Li & Vose, 2000;
Hendry, Nosil & Rieseberg, 2007; Hendry & Taylor, 2004;
Rasanen & Hendry, 2008), but these costs are not further
explored herein since we aim to focus on the individual-level
costs rather than those at higher organisational levels.

Costs are manifested through changes in fitness-related
parameters. In Table 3 we give an overview of the different
types of costs and currencies measured, for the different taxa
and different phases of the dispersal process. As expected,
most studies have recorded direct measurements of fitness
components such as fecundity and survival. Costs specifically
related to the development of dispersal-related structures or
behaviours are traded-off against reproduction or fecundity
(Fig 2b: seed dimorphism as an example). Energetic costs
that feedback against fitness in later life phases are also
documented for transfer, but here direct survival costs are
equally prominent. When damage arises during transfer,
costs can be expressed later. Currencies for settlement costs
are measured directly in terms of survival and reproduction.
Migration or genetic load can be considered as a currency
for the loss of opportunity from the point of view of the
immigrant, although they are expressed at the population
rather than individual level (Burt, 1995) with consequences
for the entire ‘accepting’ population. In birds, opportunity

costs have been detected in terms of the loss of social
dominance in a new environment (van der Jeugd, 2001).

(2) Difficulties in measuring phase-specific costs

Many correlative studies have inferred dispersal costs by
comparing fitness-related parameters between philopatric
and dispersing individuals (e.g. Belichon et al., 1996). These
studies predominantly comprise radio-tracking and capture-
mark-release studies of larger vertebrates (e.g. mammals:
Boldt & Ingold, 2005; Gillis & Krebs, 2000; Gustine et al.,
2006; Klar, Herrmann & Kramer-Schadt, 2009; birds:
Forsman et al., 2002; Kenward, Marcstrom & Karlbom,
1999; Mandel et al., 2008; Wiens, Noon & Reynolds, 2006;
Williams et al., 2000), but also of arthropods (grasshoppers
and butterflies; Heidinger et al., 2009; Hein et al., 2003;
Schtickzelle & Baguette, 2003). Although all studies assume
that these costs are levied during transfer, this is only certain
for those studies which explicitly demonstrated mortality
during transfer (e.g. traffic kills in red foxes Vulpes vulpes;
Soulsbury et al., 2008). In most of the other studies comparing
fitness between residents and dispersers, it was not possible
to trace the exact origin of the costs.

Selection against dispersal on islands and other isolated
populations of passively dispersing organisms has been
largely explained in terms of transfer costs (e.g. plants: Colas,
Olivieri & Riba, 1997; Fresnillo & Ehlers, 2008; Riba et al.,
2009; spiders: Bonte, Bossuyt & Lens, 2007; Bonte et al.,
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(A)

(B)

Fig. 2. Costs of dispersal. Left: survival costs during natal
dispersal in Eagle owls (Bubo bubo) (picture by Vincenzo
Penteriani); right: heterocarpy in action in Senecio jacobaea, with
seeds carrying pappus (red arrow) structures being smaller and
less viable than those without pappus (blue arrow; picture kindly
provided by Bram D’Hondt).

2006, 2003). We are, however, only aware of one study using
an island system in which selection against dispersal has been
related to costs from settling in non-suitable habitat (Cheptou
et al., 2008). By analysing patchy populations of the weed
Crepis sancta in the city of Montpellier, Cheptou et al. (2008)
found strong selection against wind-dispersing seeds which
had a 55% lower chance of settling in habitable patches on
pavements compared with non-dispersing seeds. This led to
rapid evolutionary loss of wind-dispersal structures in 5–12
generations.

Similarly, a clear population genetic structure in those
organisms with an assumed global dispersal suggest
that costs of transfer indeed do exist (micro-organisms:
Birkemoe & Leinaas, 1999; Lachance, 2004; Ramette
& Tiedje, 2007; planktonic marine and freshwater
invertebrates: Blanckenhorn, 1994; Matsuo, 2006; Musolin
& Numata, 2004; Olafsson, Peterson & Ambrose, 1994).
These costs may however, also follow settlement due
to genetically or environmentally unsuitable habitat, as
evidenced for microbial communities (Van der Gucht et al.,

2007), higher plants (Soons & Heil, 2002) and marine
planktonic macro-invertebrate larvae (Olafsson et al., 1994).
As expected, the phase dependency of dispersal costs is most
straightforwardly demonstrated by experiments under field
or laboratory conditions.

III. COSTS DURING THE DIFFERENT
DISPERSAL PHASES

(1) Pre-departure

Pre-departure costs are costs arising during development to
enable dispersal. In passively dispersing organisms, examples
include investment into special dispersal morphologies such
as wings or floating seeds, or fleshy fruits that attract
vertebrate dispersal agents. Two other examples comprise
the development of specific morphologies in snails enhancing
their capacity for drifting (Canete et al., 2007) or free-living
planktonic life stages (Pechenik, 1999). These investments
involve energetic costs that may eventually reduce fitness,
but no empirical quantifications have been found in the
literature. This is often due to the lack of adequate controls
such as phylogenetic contrasts with species having and
lacking the investment, or intraspecific polymorphisms with
some individuals making the investment while others do not.
In actively dispersing organisms, and insects in particular,
costs related to genetic polymorphisms or environmentally
induced polyphenisms in dispersal morphs are widely
documented. Pterygomorphism, i.e. polymorphism in wing
development, is widely documented in insects, with a number
of comparative analyses of life-history correlates both within
and among related species. For example, Dysdercus beetles
are r-selected herbivores from ephemerous habitats that are
able to allocate resources from flight muscles to reproduction
after settlement (Johnson, 1963). However, this allocation
is at the cost of increased time to maturity and subsequent
mortality risks during the juvenile life stages (Derr, Alden &
Dingle, 1981), as has been also demonstrated in bugs (Tanaka
& Wolda, 1987), aphids (Conway & Kring, 2004; Dixon
& Kindlmann, 1999) and planthoppers (Denno, Douglass &
Jacobs, 1985; Dixon, Horth & Kindlmann, 1993; Dixon &
Kindlmann, 1999; Kisimoto, 1956). Similarly, comparisons
among seed-eating bug species showed a negative correlation
between body size and wing formation (Dingle, Blakley &
Miller, 1980; Solbreck, 1986; Solbreck & Sillentullberg,
1990) and subsequently increased developmental time.
Winged milkweed bugs Lygaeus equestris produced relatively
smaller eggs than wingless individuals, generating offspring
which were not resistant to starvation, which thus induced
transgenerational fitness costs (Solbreck & Sillentullberg,
1990). Similar trade-offs were demonstrated in winged and
wingless cricket (Gryllus firmus) morphs (Roff & DeRose, 2001;
Roff, Mostowy & Fairbairn, 2002; Roff et al., 1999; Stirling
et al., 2001), mediated through changes in hormone titres
feeding back on the basal metabolism (Zera & Bottsford,
2001; Zera & Mole, 1994; Zera, Mole & Rokke, 1994).
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Table 3. The distribution of records documenting cost currencies (in brackets in the row below the cost type) according to the
number of scanned papers (N ) recording costs during the specific dispersal phases. We ordered the studies according to large
taxonomic groupings. Because opportunity costs cannot be allocated to one specific dispersal phase (see text), we have depicted their
specific currencies separately. Only papers explicitly dealing with dispersal (so excluding movement and migration) are considered

Reproduction Survival
Developmental

time Inbreeding Time
Energy
spedure

Attrition
(wound-

ing,
parasites)

Loss
social
domi-
nance

Taxon
Dispersal

phase n

(number
of

offspring) (mortality)
(time till

development)
Genetic

load
(time
unit) (Calories)

Number
of

wounds,
parasite

load
Social
rank

Micro-organisms Transfer 9 5 1 3
Plants Departure 12 1 11

Transfer 2 1 1
Settlement 43 10 32 1

Marine and
freshwater
invertebrates

Pre-departure 3 3
Departure 1 1
Transfer 22 1 19 2
Settlement 2 2

Insects and
terrestrial
arthropods

Pre-departure 76 43 3 12 18
Departure 4 2 2
Transfer 40 17 1 20 2
Opportunity 2 2

Fish and reptiles Transfer 16 2 13 2
Birds Transfer 30 22 8

Settlement 9 7 2
Opportunity 9 2 4 1 1

Mammals Transfer 27 6 1 20
Settlement 4 4

Costs can also be paid by males and are often directly
behaviourally mediated. For instance, large-winged male
crickets (Crnokrak & Roff, 1995, 1998a, b, 2000; Roff,
Crnokrak & Fairbairn, 2003) and aphids (Huberty & Denno,
2006; Langellotto, Denno & Ott, 2000; Novotny, 1995; Sack
& Stern, 2007) showed a reduction in mating opportunities
compared to wingless or short-winged relatives. In the same
vein, winged water striders showed reduced striding ability
on the water surface, potentially hindering foraging capacity
(Goodwyn & Fujisaki, 2007). In conclusion, costs of being
winged and able to fly are typically associated with allocation
of resources to wings and muscles at the expense of a poorer
condition and decreased fecundity. Another cost is longer
development time necessary for growing wings, that trades-
off against attractiveness for mating partners (Goodwyn &
Fujisaki, 2007).

In species without wing polymorphisms, but with
continuous variation in wing or wing muscle development
like butterflies and some water striders, costs of fecundity
or survival have also been demonstrated (Ahlroth et al.,
1999; Gu & Danthanarayana, 1992; Gu, Hughes &
Dorn, 2006; Hanski et al., 2004; Karlsson & Johansson,
2008; Marden & Chai, 1991). Even when dispersive
phenotypes are behaviourally rather than morphologically
determined, similar patterns of reduced performance in

dispersive phenotypes have been recorded. For instance,
in the ciliate Tetrahymena thermophila strains may differ in
life history, including short-distance dispersal rate and the
frequency of producing dispersal morphs. The strains with
the dispersive morph carry pre-departure costs reflected in
decreased growth (Fjerdingstad et al., 2007). In mites with
morphs varying in dispersal propensity, artificial selection
experiments have demonstrated a strong negative impact
for dispersers in terms of general performance (Yano &
Takafuji, 2002). In vertebrates, no specific pre-departure
costs for dispersive phenotypes have been recorded to date.

(2) Departure: initiation of the dispersal event

Costs that are strictly related to departure are rarely
documented. Although the eventual departure decision may
result from information gathering during an individual’s
lifetime, the onset of dispersal is generally a short-term
decision-making action and hence, it is the most difficult
dispersal stage to study. In accordance with our outline
above, departure costs are related to specific costs at the
start of the dispersal process, hence costs involved in
decision-making to leave the natal patch. While in many
organisms costs associated with the development of specific
dispersal attributes are incurred during development, only a
few study systems consider the quantification of costs during
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the departure phase itself. Costs associated with exploring the
environment (i.e. time, risk and energy costs), even without
actually performing dispersal, should be substantial during
the initiation of the dispersal event (Larsen & Boutin, 1994;
Young, Carlson & Clutton-Brock, 2005; Young & Monfort,
2009). Although these are obviously very difficult to assess by
experimental work, quantification of mortality rates, attrition
costs or energetic losses during routine exploratory excursions
outside the regular home range might provide insights as to
their magnitude.

Plants experience costs at departure if seeds attached to
the motherplant are predated and are therefore not removed
by animal dispersal vectors. We here deliberately consider
the production of fruits as a dispersal adaptation and admit
that this may be subject to debate. Fruits of high quality will
attract frugivores that not necessarily spread seeds, which
affects effective emigration. This consumption of fruits may
be continued by insects (Chaves & Avalos, 2006; Greig,
1993; Ostergard, Hamback & Ehrlen, 2007; Sullivan &
Kelly, 2000; Traveset, 1991; Xiao, Harris & Zhang, 2007;
Zagt, 1997) or vertebrates (Fedriani & Manzaneda, 2005;
Garcia et al., 2000; Greig, 1993; Grimm, 1995; McKinney
& Tomback, 2007; Silva & Tabarelli, 2001). Consumption
should not always incur direct mortality costs. Partial fruit
consumption may alternatively decrease fruit attractiveness,
rendering dispersal beyond the parental neighbourhood less
likely (Christensen & Whitham, 1991; Norambuena & Piper,
2000).

Drifting organisms that aggregate at a specific take-off
location for transfer provide interesting examples which show
the existence of dispersal costs related to the preparation of
the dispersal event. For instance, spiders climb elevated
structures in the vegetation to prepare for ballooning by
tiptoeing (producing silk lines that are used as an airborne
sail; Bell et al., 2005). By doing so, spiders expose themselves
to predators and experience mortality or damage costs
before and during the departure preparation phase (Young
& Lockley, 1988). Interestingly, spiders can have an anti-
predator behaviour when preparing for dispersal by taking
a position that allows for a fast escape by jumping when
attacked. This suggests that predation during dispersal
preparation may be quite common. Similar departure
behaviour has been observed in the spider mite Tetranychus

urticae (Bell et al., 2005) and in postlarval marine bivalves
climbing up the mud to expose produced byssus threads to
water currents (Cummings et al., 1993; Deblok & Tanmaas,
1977; Lundquist, Pilditch & Cummings, 2004; Olivier
& Retiere, 2006). Besides the energetic investment for
positioning (climbing-up the vegetation or the mud), the
production of silk lines or byssus threads is also intrinsically
a costly process (Bell et al., 2005; Cheung, Luk & Shin,
2006; Craig, 1997; Vahl & Clausen, 1980). Larval benthic
invertebrates from stream pools also use silk threads to
increase drift dispersal distances (Fingerut et al., 2009).
The production of drifting structures should not only be
considered as an investment for transition, but also for

settlement since it facilitates colonization of rough substrata
(Fingerut, Hart & McNair, 2006).

(3) Transfer

(a) Transfer costs in passively dispersed organisms

Endozoochory is the process by which seeds are dispersed
by an animal vector, mostly after passage through the gut,
but also by regurgitation. Gut passage may impose serious
costs of dispersal when passage time is either too long or
too short, so that seeds are respectively consumed or not
sufficiently affected to allow germination (Cosyns et al., 2005;
Traveset et al., 2003; Traveset, Rodriguez-Perez & Pias,
2008). Similarly, when seeds are secondarily dispersed, e.g. by
dung beetles or ants, costs could be higher due to suppressed
germination at large soil depths (D’Hondt et al., 2008).
However, costs can be reduced, for instance due to escape
from seed predators after burial, enhanced germination in
nutrient-rich sites (Christianini & Oliveira, 2010; Vander
Wall & Longland, 2004) or increased directedness towards
suitable habitat (Schupp, Jordano & Gomez, 2010).

Many empirical studies of micro-organisms showed
costs associated with transfer. The costs are paid because
decreasing the basal respiration in the diapause stage during
transfer (Bennett & Marshall, 2005; Crawford, 1992; Epp &
Lewis, 1984; McHenry & Patek, 2004; Wendt, 2000) comes
at the cost of a reduced fecundity (Hall & Colegrave, 2008). In
marine plankton, transfer shows deferred costs on post-larval
performance (Marshall, Pechenik & Keough, 2003; Pechenik
& Cerulli, 1991; Wendt, 1998), increased predation cost
because of crossing hostile environments (Allen & McAlister,
2007; Hiddink, Kock & Wolff, 2002; Hiddink & Wolff, 2002;
Pechenik, 1999), and mortality due to resource limitation
(Horvath & Lamberti, 1999; McConaugha, 1992). Direct
mortality costs may be related to larval age and the time
spent in the unsuitable landscape matrix (Pechenik, 1999).
Similar time-related mortality costs due to depletion of
energy reserves have been assumed in aerially dispersing
arthropods (Bell et al., 2005), but they are less likely in wind-
dispersing plants like orchids in which even limited reserves
inside the seeds are sufficient for survival for a year or longer
(Arditti & Ghani, 2000). Water-dispersed seeds of terrestrial
plants have a high chance of degenerating before reaching
land or being predated by fish during transfer (Donnelly &
Walters, 2008).

(b) Transfer costs in actively dispersing arthropods

In his seminal paper, Roff (1977) demonstrated the existence
of energetic and reproductive costs of flight in Drosophila
melanogaster. These costs were shown to decrease with body
size (Roff, 1977). Further research in insects has shown that
energetic investment (Berrigan, 1991; Combes & Dudley,
2009; Hedenstrom, Ellington & Wolf, 2001; Srygley, 2004;
Srygley & Ellington, 1999; Srygley et al., 2009) in flight
or ambulatory movements decrease fecundity (Gu et al.,
2006; Langellotto et al., 2000; Lorenz, 2007; Nespolo, Roff &
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Fairbairn, 2008; Polis et al., 1998; Saglam, Roff & Fairbairn,
2008; Zera & Bottsford, 2001). Survival costs are either
direct through increased predation rates (Aukema & Raffa,
2004; Galeotti & Inglisa, 2001; Korb & Linsenmair, 2002;
Srygley, 2004) or deferred due to a lowered insecticide
resistance (Vasquez-Castro et al., 2009). Movement is also
associated with other behaviours like foraging and mate
location, and it is questionable the extent to which reported
costs of movement during dispersal uniquely apply to transfer
as added costs, or instead are no more than baseline
costs associated with such routine behaviours (Van Dyck
& Baguette, 2005). The existence of true added dispersal
cost associated with movement probably is a matter of the
species’ space-use strategy (Mueller & Fagan, 2008) and
strongly phenotype dependent (Bowler & Benton, 2009).
Indeed, mortality or attrition costs are likely significantly
higher in species using patchy resources within a matrix of
unsuitable habitat. When specific dispersal phenotypes are
adapted to risky transfers, costs of investments in specific
‘machinery’ are likely incurred (see Section IV.2).

Transfer costs are likely to exist in insects using flight
for dispersal only, or animals for which it is shown that
movement distances are larger during transfer than for other
movements such as those for foraging or other routine
behaviours. Territorial insects with a sedentary life style
would be suitable candidate species to find such effects.
However, many inferences related to transfer costs have
been made by comparing costs between functional winged
and wingless morphs (e.g. Guerra & Pollack, 2009; Lorenz,
2007; Mole & Zera, 1994; Roff et al., 2003, 1999; Roff &
DeRose, 2001; Stirling et al., 2001; Zhao & Zera, 2006),
which confounds multiple costs. There is some evidence,
however, that in dimorphic insects (e.g. aphids, beetles,
bugs and grasshoppers) costs are predominantly paid during
development, hence before the actual departure. In this
sense, the study of Zera, Sall & Otto (1999) is unique. They
demonstrated that female crickets (Gryllus assimilis) subjected
to a substantial period of continuous tethered flight had
significantly lower amounts of total lipid, triglyceride and
total soluble carbohydrate compared to control females that
did not fly. Long-term stimulated flights—assumed to be
equivalent to genuine dispersal—consequently consumed
larger amounts of lipids and carbohydrates relative to
short flights (Zera et al., 1999). Recently, Gibbs et al. (2010)
demonstrated that such costs may also be incurred by future
generations in the speckled wood butterfly Pararge aegeria.

(c) Transfer costs in actively dispersing vertebrates

Similar costs have been recorded for actively dispersing
vertebrates to those discussed above for actively dispersing
invertebrates. Costs of (predation-related) mortality and
energy loss are recorded in reptiles (Amo, Lopez & Martin,
2007; Bonnet, Guy & Shine, 1999; Clark et al., 2008;
Hamann, Jessop & Schauble, 2007; Jessop, Hamann &
Limpus, 2004; Pietrek, Walker & Novaro, 2009; Winne &
Hopkins, 2006). In fishes, however, costs are generally more
associated with migration processes rather than dispersal.

In contrast to dispersal, migration also comprises movement
away from the natal habitat during some life stages, but with a
return to natal sites for breeding. Increased mortality is often
due to increased energetic costs (Aarestrup et al., 2005; Cooke
et al., 2006; Rand & Hinch, 1998; Rand et al., 2006), or other
costs related to extreme physical environments (Keefer, Peery
& Heinrich, 2008), or elevated exposure to parasites (Krkosek
et al., 2009). Field experimental approaches have also found a
reduction in fecundity with increased displacement distances
(Crossin et al., 2004; Jonsson & Jonsson, 2006; Kinnison et al.,
2001).

In birds, direct mortality risk during transfer appears
to be a prominent cost (e.g. Bowman & Robel, 1977;
Daniels & Walters, 2000; Hines, 1986; Kenward et al.,
1999; Matthysen, 1999; Naef-Daenzer & Gruebler, 2008;
Whittaker & Marzluff, 2009; Wiens et al., 2006). This
mortality is often related to movement through either
unfamiliar or inhospitable environments, but again empirical
evidence is very scarce. Costs are sometimes human-
induced: collision with wind turbines or power lines (Real
& Manosa, 2001; Smallwood, Rugge & Morrison, 2009),
road kills (Massemin, Le Maho & Handrich, 1998) or
human persecution (Kenward et al., 1999; Real & Manosa,
2001). There are several experimental studies demonstrating
energetic costs associated with flight speed, which may lead
to reduced future survival (Bowlin, Cochran & Wikelski,
2005; Johnson et al., 2006; Mandel et al., 2008; Masman &
Klaassen, 1987; Pennycuick & Desanto, 1989; Schnell &
Hellack, 1979; Vanderwerf, 2008; Videler, Weihs & Daan,
1983). In mammals, increased mortality costs due to road
kill and predation (Boinski et al., 2005; Gillis & Krebs, 2000;
Johnson et al., 2009; Klar et al., 2009) or wounding (Solomon,
2003; Soulsbury et al., 2008) are documented. Physiological
costs due to increased energy expenditure during movement
have also been recorded (e.g. Boldt & Ingold, 2005; Fish
et al., 2001; Girard, 2001; Gustine et al., 2006; Johnson
et al., 2002a, b; Rosen & Trites, 2002; Schaeffer et al.,
2005).

(4) (Post)-settlement

The most obvious settlement costs have been recorded in
plants. In the novel environment, seeds may experience
massive mortality for instance by predation, fungal infections
and rot (Herrera et al., 1994; Holl, 2002; Houle, 1992;
Howe, 1993; Kiviniemi, 2001). Germination and seedling
growth might be suppressed (Guariguata, Arias-Le Claire &
Jones, 2002; Herrera et al., 1994; Holl, 2002; Lehouck et al.,
2009) or seedling mortality may be increased considerably
(Hughes & Westoby, 1992; Jansen, Bongers & van der
Meer, 2008; Lehouck et al., 2009). While these costs are in
principle levied at any distance from the maternal habitat
or mother plant, seed and seedling mortality are suggested
to decrease with increasing distance from the parent due
to fewer natural enemies [Janzen-Connell effect (Nathan &
Casagrandi, 2004)]. According to the latter, assuming that
habitat availability is to some degree spatially autocorrelated,
the Janzen-Connell effect may occur over tens of metres
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(depending on the species), but at larger distances mortality
may increase through seeds arriving in less suitable habitat.
Costs will therefore change in a non-linear fashion with
seed dispersal distance, due to higher levels of enemies
close to home, but increased costs of arriving in unsuitable
habitat at greater distances. While directed dispersal through
endozoochory may overcome the latter, increased density-
dependent regulation through competition imposes new costs
for seeds dispersed by other means than gut-passage (Spiegel
& Nathan, 2010).

In passively dispersing animals survival after settlement
levies probably one of strongest costs. In marine plankton,
these costs are due to the active production of anchoring
byssus threads (Olivier & Retiere, 2006) or silk production
in terrestrial arthropods (Fingerut et al., 2009, 2006). In
clams, chemicals are produced during settlement to attract
conspecifics which aggregate as an anti-predator strategy
(Huang, Todd & Guest, 2007). In other bivalves, settlement in
crowded environments leads to density-dependent starvation
among recent settlers (Olafsson et al., 1994). Social or group-
living arthropods face Allee effects when settling in habitat
below carrying capacity (Aukema & Raffa, 2004; Bilde
et al., 2007; Calleri, Rosengaus & Traniello, 2006). These
integration costs can be of the same magnitude as costs
related to settlement in low-quality sink habitat (Boughton,
1999; Itioka & Inoue, 1991; Jones & Parker, 2000; Vessby &
Wiktelius, 2003) and maladaptation (Hansson et al., 2004).

Birds (Forero, Donazar & Hiraldo, 2002; Hansson et al.,
2004; Nilsson, 1989; van der Jeugd, 2001; Vanderwerf,
2008), but also mammals (Cant, Otali & Mwanguhya, 2001),
may lose their social rank after settlement into a novel
social context and may suffer from high levels of aggression.
Decreased survival (Brown, Brown & Brazeal, 2008) or
reproductive success (Part, 1991) due to loss of familiarity
with the environment but also due to loss of benefits
from parental nepotism (Dickinson et al., 2009; Griesser &
Ekman, 2004; Nystrand, 2007) are examples of opportunity
costs of dispersal. Griesser & Ekman (2004) demonstrated
that offspring may benefit from nepotistic antipredator
behaviours through parental alarm calls in or near the
natal territory only. Marr, Keller & Arcese (2002) showed
clear outbreeding costs in song sparrows (Melospiza melodia)
inhabiting an island system. Because these costs pass through
F1 and subsequent generations through the offspring that
are negatively affected, it differs from habitat mismatching,
a process in which individuals settle in marginal habitat with
an immediate impact on the immigrant’s performance.

Finally, settlement costs are documented to depend on
both the individual phenotype and the cause of dispersal.
For example in the common lizard, Lacerta vivipara, social
individuals pay higher fitness costs when they settle in low-
density habitat (Cote, Boudsocq & Clobert, 2008; Cote &
Clobert, 2007a). In the same species, individuals dispersing
because of kin competition will take more risks (Cote &
Clobert, 2010) and experience reduced fitness when they
settle in an already occupied area (Le Galliard et al., 2005)
compared to a non-occupied one (Cote & Clobert, 2007a).

IV. LIFE-HISTORY TRADE-OFFS AND
FEEDBACKS AMONG DISPERSAL PHASES

(1) Origin of trade-offs

Trade-offs can be under simple or pleiotropic genetic
control through genetic correlations and/or epistasis. These
correlations are likely to be expressed between and within
dispersal-related phenotypic traits including morphological,
physiological, behavioural and life-history traits. Genetic
trade-offs between functional wings and insecticide resistance
(Vasquez-Castro et al., 2009) or disease resistance (Adamo &
Parsons, 2006; Calleri et al., 2006) are examples of deferred
survival costs. Investments in flight morphology for long-
distance movements reduces acceleration speed in butterflies,
inducing a negative impact on male-male interactions and
subsequent territory-holding ability (Berwaerts, Aerts & Van
Dyck, 2006; Bonte & Van Dyck, 2009; Kemp, Wiklund &
van Dyck, 2006). In crickets, winged males experience costs in
secondary sexual traits, like calling performance (Roff et al.,
2003). Kinnison, Unwin & Quinn (2003) experimentally
showed that induced migratory costs in chinook salmon
Oncorhynchus tshawytscha not only reduced energy reserves
available for competition, but also decreased male investment
in secondary sexual traits. Although this study dealt with
migration, it nevertheless shows that costs of movement may
shift the balance between natural and sexual selection and
that these may induce a selection pressure on settlement
abilities (see Section IV.2). Another example demonstrating
trade-offs between pre-departure and settlement can be
found in water striders as large-winged individuals may
experience foraging costs because the large wings hamper
mobility over the water surface (Goodwyn & Fujisaki, 2007).

Trade-offs can subsequently induce dispersal syndromes
(or personalities in the case of correlative behaviours) with
either negative or positive correlations between the different
phases of the dispersal process (Sih, Bell & Johnson, 2004a;
Sih et al., 2004b). For example, larger dispersal distances have
been observed in bold compared to shy individuals in both
birds and fishes (Dingemanse et al., 2003; Fraser et al., 2001).
In the ciliate Tetrahymena thermophila (Schtickzelle et al., 2009)
and the lizard Uta stansburiana (Sinervo & Clobert, 2003),
a trade-off between dispersal and cooperation has been
detected with dispersive phenotypes being least cooperative
and/or bold.

While genetic correlations (the genotype) constrain cost
reduction, we should also be aware that costs will differ
in magnitude according to the phenotype. Environmentally
induced dispersal costs will therefore select for phenotype-
dependent dispersal strategies (Clobert et al., 2009). To what
extent the context at different spatial scales steers quantitative
changes of the observed within-individual correlations in
dispersal traits (Cote & Clobert, 2007b) is currently unclear.
In plants, germination rates and the settlement success of
seedlings from small seeds may depend strongly on the local
conditions that induce variation in resource availability and
allocation (Coomes & Grubb, 2003), which may obscure
the observation of emigration-colonisation trade-offs. Soil
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nutrient conditions and intraspecific competition have been
shown to influence wind dispersal in seeds because of changes
in plant height and neighbouring vegetation structure (Soons
& Heil, 2002; Soons et al., 2005). In general, and as repeatedly
shown in birds (Ashton & Armstrong, 2002; Balbontin et al.,
2009; Cam, Monnat & Hines, 2003; Ellsworth & Belthoff,
1999; Martin, Kitchens & Hines, 2007) and arthropods
(Bonte, Lukac & Lens, 2008a), deterioration of local habitat
conditions, including the presence of parasites (Altizer,
Oberhauser & Brower, 2000; Goodacre et al., 2009), during
development negatively impacts body condition. This in
turn may have consequences for dispersal due to energetic
constraints. As with suboptimal environmental habitat
conditions, poor body condition due to inbreeding depression
may equally depress departure or pre-departure investments,
as has been shown in plants (Mix et al., 2006; Pico, Ouborg
& Van Groenendael, 2004, 2003) and in spiders (Bonte,
2009). Environmental constraints may subsequently depress
dispersal in individuals in poor condition, but because they
induce a positive correlation between body condition and
dispersal, they generate ‘superdispersers’, having both high
fitness and departure capacities. When these dispersing
phenotypes are more likely to settle in high-quality habitats
than individuals in poor condition, so-called silver spoon
effects emerge (Stamps, 2006). Such correlations are an
example of a ‘‘disperser’’ or ‘‘colonizer syndrome’’ in which
highly dispersive and/or mobile individuals show rapid
development, early reproduction and high fecundity (Baker
& Stebbins, 1965). This covariation can have a genetic
basis as demonstrated in the Glanville fritillary Melitaea cinxia

with butterflies bearing allele Pgi-f having higher mobility,
fecundity and lifespan (Saastamoinen, 2007). Interestingly,
flight performance of heterozygotes is higher than of
homozygotes, especially at lower ambient temperatures
(Niitepold et al., 2009), possibly due to kinetic superiority of
the former and suggest an overdominance at Pgi (i.e. selective
advantage of heterozygotes; Orsini et al., 2009). Heterozygote
superiority and the species’ typical metapopulation structure
are therefore expected to maintain genetic variation in Pgi

(Zheng, Ovaskainen & Hanski, 2009). Individuals showing
such positive correlations between flight ability and other
life-history traits are also called fugitive species (Hutchinson,
1951). In general, the emergence of these positively correlated
strategies is explained by increased success in colonizing
vacant habitat (Bonte & de la Pena, 2009; Burton et al.,
2010; Dingle, Evans & Palmer, 1988; Lavie & Ritte,
1978).

(2) Trade-offs and feedbacks among dispersal
phases

While dispersal costs are generally assumed to be an intrinsic
property of the entire process, it follows from our review
that certain costs during the dispersal process could be more
prevalent than others. As such, costs incurred at one phase
may affect costs during others and can exert a selection
pressure on other phases to minimize overall costs.

(a) Costs incurred during development and dispersal initiation

Because costs are often levied during the development or
initiation phase, apparent low costs during the dispersal
process may be a direct result of substantial costs that
have been paid predominantly during development. The
dispersal process is, however, always strongly context-
dependent (e.g. landscape, social context, weather conditions)
and evolved condition-dependent strategies are expected
in all organisms (Clobert et al., 2009). This necessitates
the evolution of a perceptual machinery (with costs taken
during development) to translate the information about the
environment into departure decision making (cognitive and
memorizing capacities). It is unlikely that the perceptual
ability has evolved specifically due to dispersal-related
selection pressures but rather as a result of multi-layered
selection due to e.g. foraging, mate location, and predator
detection.

Pre-departure adaptations presumably involve major
evolutionary transitions with higher levels of similarity among
related taxa. Pre-departure costs are however not entirely
genetically imprinted but may be subject to phenotypic
plasticity in response to altered conditions during pre-
departure development (Benard & McCauley, 2008). For
instance, Bicyclus anynanas butterflies can alter their body
allocation in relation to the environmental conditions
(food availability) experienced during development. This
is turn affects their flight ability as well as costs of flight
(Saastamoinen et al., 2010). Similarly, Merckx & Van Dyck
(2006) showed effects of the landscape on flight morphology
in the speckled wood butterfly. In a spider of crop habitats,
temperature adaptively affected departure dependent on
the predominant landscape context (Bonte et al., 2008b).
Given the relevance of phenotypic plasticity as an adaptation
to environmental heterogeneity, it is remarkable that only
a few studies have specifically addressed this question for
pre-departure costs. While flexibility in transfer in relation
to landscape context and subsequent costs are widely
acknowledged, adaptive plasticity in departure responses
is expected to be especially prevalent in those taxa unable
to control their dispersal trajectory (dispersal kernel). In
wind-dispersing plants, plasticity as a result of environmental
and genetic constraints has been recorded in relation to
inbreeding (Pico et al., 2004), vegetation height (Soons
& Heil, 2002) and weather (Soons & Bullock, 2008),
but it remains an open question to what degree these
induced changes are adaptive rather than a constraining
outcome.

(b) Costs incurred during transfer

Selection pressures arising from mortality risk during
dispersal can ultimately induce responses in departure
thresholds according to the expected fitness of emigration.
This has been observed in typical area-scaling immigrants
with passive dispersal (e.g. ballooning spiders and plants).
Spiders from small habitat islands have a lower emigration
propensity at higher wind velocities compared to individuals
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from large, continuous habitat (Bonte et al., 2007, 2006).
Dispersal limitation by behavioural avoidance of crossing a
habitat boundary when dispersal is costly is another example
(Bonte, Lens & Maelfait, 2004; Schtickzelle & Baguette, 2003;
Schtickzelle et al., 2007; Schtickzelle, Mennechez & Baguette,
2006). Soons & Bullock (2008) and Jongejans et al. (2007)
demonstrated condition-dependent (i.e. non-random) seed-
release strategies. These strategies involve morphological
adaptations to release seeds under specific meteorological
conditions. Although costs during departure are rarely
documented, similar feedbacks towards the development
of sensory mechanisms might be expected.

(c) Costs incurred during settlement and integration

When settlement costs (i.e. failure to reach suitable
habitat) are high due to low, spatially uncorrelated habitat
availability, we expect an investment in the development
of sensory abilities to discriminate suitable habitat in
which to settle. Suitable habitat is likely recognised by
innate mechanisms or by cues related to conditions in
the natal habitat that induce natal habitat preference
(Mabry & Stamps, 2008; Stamps & Blozis, 2006; Stamps,
Krishnan & Willits, 2009; Stamps & Swaisgood, 2007). These
organisms are therefore expected to switch from an area-
scaling settlement, in which colonisation is predominantly
determined by the availability of habitat they cross during
transfer, to a perimeter-scaling immigration strategy in which
organisms have higher probabilities to select habitat based
on the habitat’s edge/surface ratio (Englund & Hamback,
2007).

The evolution of perceptual abilities has been shown
in a woodland butterfly living in a patchwork of arable
and forested landscape compared to conspecifics inhabiting
continuous woodland landscapes (Merckx & Van Dyck,
2007). The development of mechanisms that allow settlement
in suitable habitat is a so-called habitat-matching process
(Edelaar, Siepielski & Clobert, 2008). This evolved sensory
mechanism is a good example of trade-offs, where risk and
energy costs paid during pre-departure positively feedback
decreasing the settlement costs.

Changes in landscape structure might thus alter costs of
dispersal and the subsequent evolution of dispersal through,
for instance, changes in departure behaviour or locomotory
structures. As such, evolution will be in the direction of
decreasing costs of dispersal by selecting for traits that
facilitate transfer (e.g. flight muscles, larger wings), facilitate
settlement (i.e. perceptual abilities) or decrease dispersal
rates and subsequent incurred costs. While evolutionary
changes that reduce dispersal costs are likely to induce
other costs (i.e. energetic costs or increased kin competition),
natural selection is expected to balance both. If local
conditions vary within metapopulations, such costs can lead
to polymorphisms and eventually to sympatric speciation
(Doebeli & Ruxton, 1997). Any absence of dispersal or
excessive dispersal rates may, however, induce substantial
costs through the failure of local adaptation (Billiard &
Lenormand, 2005). Indeed, because dispersal is expected to

be tightly related to gene flow, philopatry will lead to the
absence of gene flow and consequently decrease the genetic
variation on which natural selection can act. By contrast, high
levels of gene flow achieved through large dispersal distances
will be responsible for gene swamping. High dispersal
distances will consequently erode any local adaptations. The
spatial network, specific dispersal rates and the distribution of
multiple interacting species will consequently have a strong
impact on patterns of local adaptation (Prugnolle et al., 2005;
Vogwill, Fenton & Brockhurst, 2010) with pronounced effects
on co-evolutionary processes in geographic mosaics (Barbour
et al., 2009; de la Peña, D’Hondt & Bonte, 2011; King
et al., 2009; Nuismer, 2006; Smith et al., 2010; Thompson,
2005). In the absence of habitat-matching strategies, costs
of maladaptation are likely to be positively correlated
to genetic distance between populations. Therefore, such
integration costs can be expected to select against long-
distance dispersal, by inducing selection pressures on specific
departure behaviour or morphology. Recent studies have
demonstrated such different selection pressures on long- and
short-distance dispersal (Bonte, Hovestadt & Poethke, 2010b;
Levin et al., 2003).

Opportunity costs due to changes in the social
environment at settlement may also feedback on strategies
at the departure or pre-departure phases. For instance,
if costs at settlement due to increased harassment are
high, selection towards body-condition-dependent strategies
is expected (Gyllenberg, Kisdi & Utz, 2008). In the case
of (eu)social animals (animals in which group living yields
fitness benefits), severe costs would be expected when group
benefits disappear, or when settlement is into a genetically
different population (Griesser et al., 2008; Kahlenberg et al.,
2008). In this case, selection would be expected to reduce
the dispersal distance when kin structure is highly positively
spatially correlated. Alternatively, emigration processes that
maintain group structure such as budding or restricted
dispersal by inseminated females can evolve (Kummerli
et al., 2009; Lehmann & Keller, 2006). By contrast, local
kin competition may induce selection pressures that increase
emigration rates and dispersal distance strategies relative
to non-kin environments, and alter the cost-benefit ratio
expected for individual dispersers in an heterogeneous
environment (Leturque & Rousset, 2002). This would
subsequently generate an absence of balanced dispersal
between habitats and a deviation from the species’ ideal
free distribution.

Opportunity costs should be considered as the ultimate
trade-off in fitness prospects between philopatric and
dispersive individuals, or in relation to dispersal distance.
This means that benefits lost in the natal environment for a
disperser are compensated through the alternative next-best
option. As such, costs taken during dispersal imply that costs
of staying in the natal environment are dismissed. Because
of this inherent correlated cost and benefit balance between
(pre-)departure and settlement, they should be considered
as a cost of the entire dispersal process rather than of a
separate dispersal phase. However, as argued before, we
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here explicitly consider them as settlement cost, and these
costs are already taken when preparing transfer to new
habitat.

V. CHANGING COSTS IN A CHANGING WORLD

Rapid environmental changes in land-use and climate
(Smith et al., 2009) are likely to influence the costs of
dispersal. In general, increasing habitat fragmentation
induces non-linearity in dispersal evolution, with at the
start a clear evolution towards high dispersal rates followed
by a bifurcation and the evolution of both residential and
dispersive strategies, and eventually a clear counter-selection
against dispersal if habitat fragmentation becomes severe
(Heino & Hanski, 2001; Mathias, Kisdi & Olivieri, 2001).
While increasing habitat fragmentation will decrease the
connectedness of suitable habitat and resources and as such
increase transfer costs, rapid climate change is expected
to induce changes in life histories such as the duration
of juvenile stages during which dispersal occurs (Berg et al.,
2010; O’Connor et al., 2007). Changes in phenology together
with changes in weather conditions are additionally likely
to change the temporal windows of dispersal and may
eventually impact connectivity. Indeed, movement costs are
related to ambient temperature or wind velocity, but changes
in climate may also affect dispersal trajectories in marine
systems due to changes in oceanic currents (Parmesan, 2006).
Species can adapt to global warming by phenotypic plasticity
in thermal responses or by genetic adaptations (Pulido &
Berthold, 2004), but non-adaptive plasticity due to changes in
individual body condition may provoke substantial changes
in dispersal costs.

Passively dispersing organisms appear to experience
predominantly pre-departure and settlement costs in
fragmented landscapes with limited habitat availability. By
contrast, other species have developed sensory mechanisms
to reduce these costs, and have higher settlement
probabilities. The selection pressure due to landscape
changes can therefore be expected to differ between these two
groups, and we expect evolutionary changes in dispersal to
become prevalent in the latter group. Plants, and probably
passively dispersing invertebrates, are not able to develop
any of these sensory-motor adaptations. Increased costs
due to habitat fragmentation will then inevitably lead to
decreasing dispersal rates, eventually leading to evolutionary
traps (Schlaepfer, Runge & Sherman, 2002) or evolutionary
suicide in cases where reduced dispersal induced strong
fitness costs due to, for instance, inbreeding depression
(Colas et al., 1997). Fig. 3 shows a schematic (and purely
hypothetical) representation of how trade-offs may induce
failures of connectivity restoration. The main idea is that
adaptation towards reduced dispersal is possible during the
process of habitat fragmentation (Massot, Clobert & Ferriere,
2008), but that the accompanied loss of standing genetic
variation hampers evolution in the opposite direction when
connectivity is restored.

Fig. 3. A schematic representation of how trade-offs among
costs may give rise to different genotypes of a hypothetical insect
under a scenario of habitat loss and fragmentation and how
restoration success may consequently fail. The insects are drawn
according to the allocated investments in dispersal (wing size and
thorax size), perceptual ability (eye size) and fecundity (abdomen
size). The bar diagram depicts the hypothetical energy allocation
to fecundity (blue), perceptual ability (red) and dispersal ability
(green). In an intact landscape (A; the reference), costs of
dispersal are low and perceptual abilities are only moderately
developed. As a consequence, inhabiting genotypes allocate
relatively more energy to fecundity than to wing development
and perceptual ability. After sudden habitat loss and subsequent
fragmentation, high selection pressures will give rise to either
highly mobile genotypes with well-developed perceptual abilities
(B1) or genotypes with a loss of dispersal (B2). In the former
case (B1), costs on fecundity are high but the species is able
to occupy all patches in a panmictic population. In the latter
case (B2), the species will become philopatric and residential
at the local carrying capacity in the four subpopulations. After
restoration efforts to decrease dispersal mortality by creating
stepping stones, loss of genetic variation and low selection
pressures will impede fast evolution, and the combined action of
environmental and demographic stochasticity will remain high,
thereby maintaining the population at low fecundity (C1). In
the isolated subpopulations (C2), stepping stones will not be
colonised and inbreeding may subsequently induce a decrease
in fecundity.

Global warming is expected to cause deeply modified
dispersal both at the northern and southern margins of a
species’ distribution by favouring individuals with specific
syndromes that maximise fitness at range margins. For
example, large cane toads Bufo marinus (Phillips et al.,
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2008) and aggressive mountain bluebirds Sialia currucoides
(Duckworth & Badyaev, 2007) are favoured at their invasion
front due to the combined effects of enhanced transfer
efficiency, reproduction or territory occupation. On the
other hand, trade-offs between dispersal and other traits that
enhance adaptation to novel habitats may constrain range
expansion. In the common lizard, for instance, individuals
with lower levels of melanin in their back skin are more
resistant to environmental conditions at the range margin,
but also have reduced dispersal (Lepetz et al., 2009). This
short-term adaptation acts as an evolutionary trap since
an enhanced dispersal should be necessary in the long
term to escape deleterious effects of warming (Massot et al.,
2008). Evolutionary traps due to evolved investments are also
prevalent when directed dispersal has evolved in response to
large frugivores that have become extinct in recent times.
Here, costs are taken by plants during development, i.e.
through the production of conspicuous structures (often
arilles or fleshy fruit pulp) containing the seeds, but
benefits during transfer and settlement have disappeared,
leading to deterministic extinction, as for instance observed
in some long-lived tropical trees (Guimaraes, Galetti &
Jordano, 2008). At expanding range margins reduced costs
of settlement (more space, no preoccupation) has selected
for increased pre-departure costs in, for instance, cane toads
(Phillips et al., 2008) and insects (Leotard et al., 2009; Thomas
et al., 2001) due to investment in longer legs, and longer wings
or earlier reproduction, respectively.

Finally, costs incurred at the other phases of
dispersal should be considered for connectivity restoration,
translocation and reintroduction programs (i.e. assisted
migration), which are designed to decrease transfer costs,
but do not consider potentially high integration costs. While
forced dispersal may be costly, we do however stress from
a scientific point-of-view that costs taken during forced
dispersal are not informative on the prevalence of costs
during natural dispersal and care should be taken when
using this approach in experimental studies.

VI. IMPLICATIONS FOR MODELLING

Whilst many models have been developed to investigate
the causes and consequences of different dispersal strate-
gies, costs have been incorporated in very simplistic ways.
The vast majority of models have focussed on establishing
the evolutionarily stable rate of emigration (e.g. Hovestadt,
Messner & Poethke, 2001; Poethke, Hovestadt & Mitesser,
2003; Rousset & Gandon, 2002), and have typically assumed
that emigrating individuals suffer a constant probability of
mortality (that is explicitly or implicitly assumed to occur
during transfer). In most cases these models have considered
density-independent probabilities of departure, although the
evolution of density-dependent emigration strategies has
been addressed by several recent studies (Poethke & Hov-
estadt, 2002; Travis et al., 2009). But very few studies have
explored the evolution of movement or settlement strategies

(e.g., Ruxton & Rohani, 1998; Heino & Hanski, 2001;
Matthias et al., 2001; Barton et al., 2009). Due to the rather
narrow focus on the departure phase, there has been hardly
any theoretical consideration on the causes or consequences
of different dispersal cost structures (but see J.M.J. Travis,
in preparation). Doing so will emphasise both the need to
decompose the costs and provide a model structure within
which the partitioning of costs is straightforward to achieve.

Substantial recent progress has been made in modelling
the movement of both plants and animals and there is a
clear opportunity to utilise these approaches in modelling
the transfer phase of dispersal. For plants, there is a suite
of mechanistic models simulating the movements of seeds
by wind (for reviews see Kuparinen, 2006 and Nathan et al.,
2011). Animal movement through heterogeneous landscapes
can now be modelled using, for example, biased correlated
random walks (Barton et al., 2009) or Ornstein-Uhlenbeck
processes (Smouse et al., 2010). By using these process-based
models it is possible to ask how the movement behaviour of an
individual during the transfer phase influences the time that it
takes to locate a suitable habitat patch, or the predation risk it
suffers during dispersal (Delgado et al., 2010; Zollner & Lima,
2005). In an evolutionary context, we can ask how selection is
expected to shape the movement rules in response to a partic-
ular environmental context. Initial work in this direction has
demonstrated that we should typically expect highly corre-
lated inter-patch movement of dispersing individuals (Heinz
& Strand, 2006). It has been suggested that individuals should
engage in riskier movement behaviours when the landscape
matrix is less hostile (Barton et al., 2009). More complex spa-
tial environments can be modelled by incorporating matrix
elements with different associated energetic costs of move-
ment or different risks of predation; an individual’s ability to
move through the matrix, or to perceive a habitat patch (or to
locate better quality matrix), may depend upon pre-departure
investment in potentially costly visual or olfactory apparatus.
Models could usefully be deployed to ask how investment in
perceptual ability might depend upon the quality and spatial
structure of the habitat and landscape matrix.

A dispersing animal that reaches a potential habitat patch
has to decide whether or not to settle at that site or to search
for another site, and thus, return to the transient dispersal
phase. Remarkably few models explicitly incorporate set-
tlement decisions or the evolution of settlement behaviour.
One possible rule is that individuals deterministically decline
to settle in a patch if their expected reproductive success
in that patch is below a threshold and continue searching
until they locate a patch where the expected fitness exceeds
this constant threshold (Ruxton & Rohani, 1998). In reality,
individuals will expend energy and time as they search for
and assess the quality of habitat patches, and these costs are
likely to mean that the settlement threshold will change. An
individual will become increasingly likely to accept lower
quality habitat over time. Hence, we expect an individual to
have a higher probability of accepting lower quality habitat
(e.g. more crowded habitat) when the cost of moving through
the matrix is higher.
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The new generation of spatial simulation models also needs
to incorporate other issues highlighted herein, including
trade-offs such as between dispersal ability and reproduction.
Surprisingly few models have explored the evolution of
dispersal where increased movement ability comes at a
cost to other key life-history traits such as fecundity (see
King & Roff, 2010; Burton et al., 2010 for exceptions) or
where costs of dispersal evolve (Billiard & Lenormand,
2005). King & Roff (2010) have presented the results of
a model where flight dimorphic insects trade-off fecundity
for dispersal ability. In this model only the macropterous
individuals disperse, but the probability that a macropterous
individual emigrates depends upon the amount of resources
it has devoted to flight ability. As the majority of the
models exploring dispersal evolution, the model applies a
survival cost to dispersal that is assumed to integrate different
potential costs associated with emigrating, including the
energetic costs of flight. It is also typical of much of the
theoretical literature in assuming that emigrating individuals
enter into a common migrant pool, and surviving migrants
are distributed randomly amongst patches. By integrating
life-history trade-off approaches similar to those described
by King & Roff (2010) in models allowing for the evolution of
more complex inter-patch movement behaviours (e.g. Heinz
& Strand, 2006; Barton et al., 2009) it would be possible to
develop a flexible modelling framework much better suited
to addressing many of the interesting questions that arise as
we decompose the dispersal process, and its associated costs,
into different phases.

VII. CONCLUSIONS

(1) Costs are ubiquitous at different phases of the dispersal
process. While costs of transfer have been widely documented
in actively dispersing organisms as well as costs of departure
in passively dispersing organisms, our review emphasises
that costs are levied during all dispersal phases. We still lack
insights as to what degree special dispersal behaviours are
associated with different costs in comparison with dispersal
through more routine behaviours. Prospecting costs during
dispersal preparation are likely to be ubiquitous in actively
dispersing organisms, but are understudied. Quantification
of these costs by careful experiments should be the next phase
of research.

(2) Because costs during each of the dispersal phases
are expected to induce trade-offs with traits relevant to other
phases, different correlated responses are expected in relation
to the specific social and environmental context.

(3) Within populations, trade-offs among traits at the
individual level may give rise to heterogeneity of alternative
strategies in different environmental or social contexts.
Among populations, these observed correlated responses
may be conserved, but also reversed, depending on the
balance between resource acquisition and allocation.

(4) Because costs are balanced by environmental
properties and individual condition, trade-offs will induce

condition- and context-dependent dispersal strategies. We
should therefore abandon the idea that dispersal is a simple,
fixed process and acknowledge the existence of complex
spatial and temporal patterns in dispersal.

(5) Ultimately, cost-partitioning mechanisms are expected
to exert selection pressure on pre-dispersal (developmental)
investments in either mobility or sensory mechanisms. Costs
may alternatively induce selection at settlement, for instance
to improve habitat matching rather than non-selective
settlement.

(6) From a conservation point of view, costs of dispersal
are not only incurred during transfer but also during earlier
life phases and during settlement. Understanding such costs
is essential within the context of introductions, assisted
dispersal (which phenotypes to select, presence of costs due to
habitat matching and local adaptation) and the restoration of
landscape connectedness (effectiveness of corridors according
to altered movement rules, migration load etc.).

(7) Depending on settlement costs, animals in particular
may use apparently more costly transfer routes in order to
decrease costs at settlement. It is therefore highly relevant
that both theoretical approaches and applied conservation
modelling approaches should consider the existence of
multiple costs, and trade-offs among them, to understand
adaptive dispersal responses of organisms in landscapes
subject to global change.

(8) Whereas there is growing interest by modellers in
how costs at the distinguished dispersal phases may shape
the evolution of dispersal genotypes, the recognition and
understanding of the multiple cost structures is equally
relevant in applied ecological questions.
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